on the decomposition of noncosingular $sum$-lifting modules

نویسندگان

t. amouzegar‎

department of‎ ‎mathematics, quchan university of advanced technology, quchan‎, ‎iran.

چکیده

let $r$ be a right artinian ring or a perfect commutative‎‎ring‎. ‎let $m$ be a noncosingular self-generator $sum$-lifting‎‎module‎. ‎then $m$ has a direct decomposition $m=oplus_{iin i} m_i$‎,‎where each $m_i$ is noetherian quasi-projective and each‎‎endomorphism ring $end(m_i)$ is local‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the decomposition of noncosingular $sum$-lifting modules

Let $R$ be a right artinian ring or a perfect commutative‎‎ring‎. ‎Let $M$ be a noncosingular self-generator $sum$-lifting‎‎module‎. ‎Then $M$ has a direct decomposition $M=oplus_{iin I} M_i$‎,‎where each $M_i$ is noetherian quasi-projective and each‎‎endomorphism ring $End(M_i)$ is local‎.

متن کامل

Strongly noncosingular modules

An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...

متن کامل

The unit sum number of discrete modules

In this paper, we show that every element of a discrete module is a sum of two units if and only if its endomorphism ring has no factor ring isomorphic to $Z_{2}$. We also characterize unit sum number equal to two for the endomorphism ring of quasi-discrete modules with finite exchange property.

متن کامل

on direct sums of baer modules

the notion of baer modules was defined recently

GENERALIZATIONS OF delta-LIFTING MODULES

In this paper we introduce the notions of G∗L-module and G∗L-module whichare two proper generalizations of δ-lifting modules. We give some characteriza tions and properties of these modules. We show that a G∗L-module decomposesinto a semisimple submodule M1 and a submodule M2 of M such that every non-zero submodule of M2 contains a non-zero δ-cosingular submodule.

متن کامل

the unit sum number of discrete modules

in this paper, we show that every element of a discrete module is a sum of two units if and only if its endomorphism ring has no factor ring isomorphic to $z_{2}$. we also characterize unit sum number equal to two for the endomorphism ring of quasi-discrete modules with finite exchange property.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

جلد ۴۲، شماره ۱، صفحات ۴۳-۴۸

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023